我们一起解密数据分析

来源:晓阳的数据小站 晓阳的数据小站 日期:2021-06-02

本文转载自微信公众号「晓阳的数据小站」,作者晓阳的数据小站。转载本文请联系晓阳的数据小站公众号。

 |0x00 数据分析做什么

数据分析的定义,在百度百科上是这样介绍的:“用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。”这句话的理解比较费劲,那么简单一点讲,数据分析就是发现有用的信息,提供结论并支持决策。

有道是“数据在手,天下我有”,但如何寻找出数据中潜在的价值,就是分析师的重要工作了。

数据分析大概有两种不同的发展方向,一种是偏向业务分析,需要对业务有比较深的理解,在此基础上,通过数据来寻找业务增长的套路,例如用户增长、网站分析、经营分析等;另一种是偏向数据挖掘,更加注重技术、尤其是算法能力的应用,需要对常见算法的应用熟练掌握。实际工作中,由于数据挖掘需要非常好的技术功底,因此绝大多数人都是偏向业务进行分析。

|0x01 数据分析的工作内容

那么数据分析的童鞋,日常主要在做什么呢?简而言之,在做三件事:业务的现状是什么、为什么会发生、未来将要如何(或如何改进)。

现状分析,就是告诉业务决策者,过去发生了什么事情,并且通常以报表的形式呈现出来。所以分析师不光要能够做日报、周报,还需要自己来搭建报表平台,通过分析关键的指标,来掌握业务的运营情况。

原因分析,是在业务现状的基础上,分析为什么会发生这些事情。比如指标上升或者下降了,是因为什么原因造成的;或者是分析不同渠道对于最终转化的贡献情况。分析的过程,通常会通过专题的形式展示出来。

预测分析,则是告诉业务,未来会发生什么。预测其实是一件很重要的工作,不论是企业经营目标的制定,或者是相关策略的落实,都需要预测未来可能的情况,来保证业务的健康可持续发展。例如电商大促的到来,销量会得到很大的提升,那么对应的预算、物流、商家要做怎样的应对,都依赖于数据来提供预测。

|0x02 相关概念的解释

还是有人会产生疑问:“数据分析”、“数据科学”、“数据驱动”、“商业智能”,这些概念都有怎样的不同呢?

首先说一下“商业智能”,英文是Business intelligence,这是我们常说的BI,其主要价值,在于通过一系列的数据技术,从数据中挖掘隐藏的客观规律,总结这些规律背后的原因,并用于指导公司业务的发展。大多数情况下,BI分析师的工作,就是通过SQL、Python等语言,将已经统计好的数据,结合数据模型或者是分析框架,来对业务进行各种分析,并做成有价值的报表或者报告的形式,供业务方进行分析。

再讲讲“数据科学”,这个概念就要宽泛的多,通常指在跨学科的领域中,通过数据来寻找到解决问题的方法。数据科学的概念其实比较模糊,属于宽口径的概念,在不同的行业里所做的事情,可能是截然不同的。在互联网行业中,数据科学大约代表:先通过探索分析发现问题,然后再用数据建模去解决问题。

那么“数据驱动”又如何理解?数据驱动的字面意思是将数据来作为生产资料,通过科学的方法,来推动业务的优化提高。在互联网行业里,数据驱动又可以分为数据驱动产品、数据驱动业务两个方向,比如通过A/B测试来寻找最优的推荐算法,或者是设计实验来指导产品迭代更新的方向,等等。

因此,在一家公司中,不同数据岗位的分工大体如下:数据工程师负责数据平台的搭建、数据仓库的建设,以确保数据被正确的计算和方便的获取;数据分析师根据数据来描述或者是分析相应的问题,这其中包括了“商业智能”来做报表,或者是“数据科学”来寻找数据模型,最终都是“数据驱动”业务增长或产品迭代。

|0x03 如何来做数据分析

数据分析虽然需要的基础知识非常多,属于入门门槛比较高的那一种,但实际的工作却大体遵循如下的步骤,细节可以有不同:

明确分析目的 - 确定思路框架 - 准备数据 - 分析数据 - 展示数据 - 报告撰写。

一,明确分析目的,非常重要,目的不明确会导致分析的过程十分盲目。这里会有一个假设,即分析师需要懂业务,并且有自己对于业务的理解,如果没有相应的专业知识,通常分析的结果就没有特别大的价值。那么什么是懂业务?大体上就是需要明白企业的商业模式是怎样的,通过什么样的关系能够产生商业价值。如果是2B方向,还需要懂一些管理学的内容,了解数据如何辅助公司的经营管理。

二,确定思路框架,是通过怎样的指标、哪些角度来进行分析。其实业界有一些非常通过的方法,可以让我们快速开展业务的同时,能够保证“MECE原则”,即对于一个重大的议题,能够做到不重叠、不遗漏的分类,而且能够借此有效把握问题的核心,并成为有效解决问题的方法。

    A+
声明:本文转载自其它媒体,转载目的在于传递更多信息,并不代表赞同其观点和对其真实性负责。