人工智能的天花板和认知智能时代的来临

来源: 道翰天琼认知智能 日期:2021-06-17

摘要:5月29日,Science刊登了一篇标题为“人工智能某些领域的核心进展一直停滞不前”的文章,在文章里,作者Matthew Hutson提到:一些多年之前的“老算法”如果经过微调,其性能足以匹敌当前的SOTA(编者注:得分最高的算法)。

  所有的分析结果主要有两种:1、研究员声称的核心创新只是对原算法的微改进;2、新技术与多年前的旧算法在性能上相差不大。

  具体到技术层面,论文对比分析的AI建模方法包括:神经网络剪枝、神经网络推荐算法、深度度量学习、对抗性训练、语言模型。

  他们通过对比81相关篇论文,并在对照条件下对数百个模型进行修剪后,明显发现神经网络剪枝这一领域并没有标准化的基准和指标。换句话说,当前最新论文发表的技术很难进行量化,所以,很难确定该领域在过去的三十年中取得了多少进展。

  对当前排名靠前的几种推荐算法进行了系统分析,发现近几年顶会中提出的18种算法,只有7种能够合理的复现。还有另外6种,用相对简单的启发式方法就能够胜过。剩下的几种,虽然明显优于baselines,但是却打不过微调过的非神经网络线性排名方法。

  研究员声称近十三年深度度量学习(deep metric learning) 领域的目前研究进展和十三年前的基线方法(Contrastive, Triplet) 比较并无实质提高。

  研究员一共指出了现有文献中的三个缺陷:不公平的比较、通过测试集反馈进行训练、不合理的评价指标。

  近期的很多研究都声称他们的对抗训练算法比投影梯度下降算法要好的多,但是经过研究发现,几乎所有最近的算法改进在对抗性训练上的性能改进都可以通过简单地使用“提前停止”来达到。(编者注:所谓“提前停止”,即不进行那么多的训练,换句话说,人们用了各种办法想去解决问题,实际上少训练一些就解决了。)

  作者通过大规模的自动黑箱超参数调优,重新评估了几种流行的体系结构和正则化方法,得出的一个结论是:标准的LSTM体系结构在适当的正则化后,其性能表现优于“近期”的模型。(编者注:老办法还是最好的。)

点评:这样的事实说明了几个问题:

1、业界的浮燥,只是为了达到一个好看的分数,有一篇看起好像很厉害的论文,根本不管其算法在实际应用中是否有效,因为文中所说的很多问题,离开特定的数据,放到实际应用中去检验,立马就能现出原形。

2、总是去追捧那些看上去高大上、深奥、复杂的方法,总觉得只有这样的方法,用了很多的数学公式、方程,才称得上是高水平的研究和成果。我们忘了初心,那就是用尽量简单的方法去解决复杂问题,因此会闹出“提前停止”这种笑话,做了一大堆复杂的事情,结果还不如“少做一点”。不由得让人又想起那个段子,要花上百万设计出机械手去抓取生产线上的空香皂盒,结果用一台风扇放在生产线旁一吹就解决了。是时候仔细想想了,我们大脑真的是用那些复杂的数学方程在解决问题吗?

3、人工智能、机器学习、深度学习真的是顶到天花板了,在原有基础上小修小补已经解决不了问题,把测试分数提高1%、2%实在是没有什么意义了。现在需要的是革命性的突破,需要一种全新的、与深度学习具有本质不同的方法。所谓本质不同,就是深度学习不管多深奥、测试分数多高,都不能解决机器的认知问题,即机器无法知道大千世界及其各种事物的意义,不知道面包可以吃,人要生存必须吃东西,面包可以让人活下去……没有这样的认知,机器永远不可能有高水平的智能。而新的方法,必须在机器认知上向前迈进一步,因此新一代智能,认知智能体系正在到来。全新的智能体系正在到来。下面是认知智能相关体系介绍:

 

认知智能介绍

认知智能是计算机科学的一个分支科学,是智能科学发展的高级阶段,它以人类认知体系为基础,以模仿人类核心能力为目标,以信息的理解、存储、应用为研究方向,以感知信息的深度理解和自然语言信息的深度理解为突破口,以跨学科理论体系为指导,从而形成的新一代理论、技术及应用系统的技术科学。 认知智能的核心原理范畴包括:1.宇宙、信息、大脑三者关系;2.人类大脑结构、功能、机制;3.哲学体系、文科体系、理科体系;4.认知融通、智慧融通、双脑(人脑和电脑)融通等核心理论体系。 认知智能实现落地四步走:1.认知宇宙世界。支撑理论体系有三体(宇宙、信息、大脑)论、易道论、存在论、本体论、认知论、融智学、HNC 等理论体系;2.清楚人脑结构、功能、机制。支撑学科有脑科学、心理学、逻辑学、情感学、生物学、化学等学科。3.清楚信息内涵规律规则。支撑学科有符号学、语言学、认知语言学、形式语言学等学科。4.系统落地能力。支撑学科有计算机科学、数学等学科。

认知智能是计算机智能体系发展的高级阶段,但不是最终阶段,最终阶段或是通用智能(强人工智能),是人工智能发展的下一阶段,是智能体系发展的高级阶段。智能体系,从计算智能到感知智能,再从感知智能到认知智能,再从认知智能到通用智能强智能。智能体系大概会经历四个阶段。认知智能,只是智能体系的第三个阶段,也代表了智能体系发展的第三个时代,认知智能时代。 计算智能 数值数据计算为基础。 感知智能 以模仿人类感知环境信息为基础。 认知智能 以模仿人类认知理解记忆思维等能力为基础。 通用智能以全方位模仿人类智慧等能力为基础 。

认知智能的核心理论体系包括HNC(中科院黄曾阳教授创立此理论体系)、融智学(中美塞尔研究中心主任知名学者教授邹晓辉老师创立此学科)、三体(宇宙、信息、大脑)论(杭州道翰天琼智能科技有限公司创始人李坤创立此理论)、。同时还包括中西方哲学体系(易经、道德经、存在论、本体论、认知论等)、脑科学、心理学、逻辑学、情感学、生物学、化学,符号学、语言学、认知语言学、形式语言学,计算机科学、数学等学科。认知智能理论体系涉及多学科理论体系,跨界融通多学科理论体系,是认知智能从业者所必备的基本功。整套认知智能理论体系融合了多个学科,多个领域的的理论思想体系,融合之后,才能从各个学科的角度去认知和解密认知智能的奥秘,解密人类大脑的结构,功能和机制。从而得以复制人脑的核心八大能力,得以让计算机和机器人具备类人脑的三智(智慧、智力、智能)能力。

三体论是探索研究宇宙,信息(融智学信息八大形式信息)和人 类大脑三者关系的理论体系。三者关系形式化类比就如同照相机。宇宙类似照相机的取景地,信息类似照相机镜头获取到的取景地信息,大脑类似照相机的底片。宇宙中存在着大量的客观信息,这些信息在表达着宇宙的客观事物。宇宙的客观事物信息化之后,就变成了信息体系。因此宇宙是信息的本质来源,信息是宇宙的信息化表示。信息被人类大脑感知和认知之后,有部分信息则会存储在人脑内部。这些信息到达人脑之后就存储在人脑内部的各个区域的神经元之上。因此外界信息是人类大脑内部的信息本质来源之一,人类大脑是外界信息的载体之一。客观宇宙和大脑的关系是,大脑内部存储着宇宙的局部世界,大脑内的世界和宇宙的局部有着相同或者非常类似的地方。因此宇宙的局部在大脑中存在映射。这个映射的建立,就是通过信息这个中间媒介建立起来的。因此人脑,信息,大脑三者关系非常类似照相机的取景地,镜头和底片。同时大脑内部的结构如果无限放大,结构就类似宇宙结构,而宇宙无限缩小的时候,其结构就非常类似人类大脑内部的结构。具体可详查宇宙和大脑结构对比。

融智学是著名学者教授中国塞尔研究中心主任邹晓辉老师创立的一门全新的学问体系。其创立的背景是呼应第一次认知大飞跃。其创立的目的是引领第二次认知大飞跃。融智学的细化目的包括抽象出简美的融智观和融智法,理论上确立理义法道(本质)(物意文现象)智能化系统工程,工程上探索言识软硬形式化系统工程,应用上践行教管学用社会化系统工程。其核心三部曲包含理论融智学,工程融智学和应用融智学。理论融智学包含三菱锥,四面体,融智方法论,智能化系统工程。工程融智学包括间接信息形式化体系,言识软硬形式化工程体系。应用融智学包括懂会熟巧用思想体系,教管学用社会化系统过程体系。融智学在应用融通上又包含三部分,金融与智融,斗智与融智,单音节的言和自然数格点等体系。融智学的博度,广度和深度都是目前单一学科体系难以企及的。融智学的智慧体系来源于八大学科体系,是众多学科智慧体系的集大成者,在培养跨界人才,培养认知智能人才上有着不可取代的作用。同时也是认知智能理论体系的奠基理论体系之一。

HNC自然语言处理技术(国家“973”计划项目G1998030506)是一种具有原始创新特点的自然语言理解处理技术。HNC自然语言处理技术(国家“973”计划项目G1998030506)是一种具有原始创新特点的自然语言理解处理技术。该技术以中科院声学所黄曾阳研究员创立的概念层次网络(简称HNC)理论为指导。HNC理论认为:自然语言理解的本质是概念联想脉络激活、扩展、浓缩、转换与存储的全过程运作。激活运作的要点是语句的理解;扩展与浓缩运作的要点是段落与篇章的理解,转换与存储的要点是记忆与学习。语句的理解必须定位于概念联想脉络运作全过程的激活。并且建立了自然语言的概念空间。语句及自然语言的理解,就是从语言空间向语言概念空间的映射过程。这一处理方案,使计算机能够进入自然语言的语义深层,在“懂”的基础上完成对自然语言的各种处理。该技术在汉语语句理解处理方面居国际领先水平。

认知智能是智能体系发展的第三个阶段。因此计算智能,感知智能的相关技术体系也会被继续沿用,传承,发展,创新。计算智能,感知智能技术体系,也是认知智能技术体系的基础之二。在之前两个体系之上认知智能创新发展了全新的技术体系。包含认知维度识别,概念层次网络(词脑,字脑,概念维度网络等都类似此结构),万维图谱(几十种图谱的组合,包含属性图谱,行为图谱,状态图谱,数量图谱,因果图谱等各种图谱),双字棋盘,句类肯否褒贬识别,深度语言理解,计算机记忆,计算机类脑学习,计算机语言自组织,计算机情感,计算机逻辑系,计算机意识,以及计算机感知技术与认知技术融合贯通的能力而形成的技术体系等核心技术体系。认知智能和人工智能在技术底层的最大形式化区别就是,无需繁复的标注,无需繁复的训练调优。在时效上,在成本上,在智能程度上,在最终端客户认可度上,都有非常大的优势。具体可查看认知智能和人工智能的区别对比。整个认知智能技术体系,以后会有大量的专题资料介绍讲解,所以这里不做过多详述。

人工智能以模仿人类感知能力为基础,重点在感官能力的模仿。认知智能以模仿人类认知能力,理解能力,记忆能力,逻辑思维能力,情感能力等能力为基础。重点在认知,理解,记忆,思维,情感等类脑能力方面进行研究突破。认知智能和人工智能对应的智能体系分别是第三阶段和第二阶段。从时代划分上,分别对应认知智能时代和人工智能时代。随着人工智能技术体系天花板的产生,亟待需要新的智能体系来创新,突破,引领新时代的发展。从人工智能过度到认知智能也是科技和社会发展的必然趋势。同时认知智能,新一代智能体系也是国家2030科技方面的重要战略规划。

认知智能是以人脑认知体系为基础,以复制人脑核心能力为研究方向的计算机分支新学科之一。认知智能不是产品,是一套理论,技术和应用系统体系。其代表的是一个全新认知智能时代。人工智能目前所覆盖的市场,行业,以及相关产业,认知智能会全方位覆盖,升级和改造。并且还会开拓出新的蓝海市场,新的行业乃至全新的产业体系。随着国家2030科技战略的推进和国家新基建的推进,5G的推进和落地,万物互联时代的到来,急迫需要的就是万物智能体系。 核心八个字,万物互联,万物智能。现在的人工智能体系,存在诸多弊端,认知智能要传承,发展,创新人工智能体系,革除人工智能的弊端,开创全新理论,技术,应用系统,市场,产业等。随着认知智能的深度发展,目前互联网行业,移动互联网行业,大数据行业,人工智能行业等相关行业都会得到全面的升级改造。认知智能相关体系会在未来10年之内成为科技领域的基础设施体系之一。认知智能 赋能百业 全新时代!

 
    A+
声明:本文转载自其它媒体,转载目的在于传递更多信息,并不代表赞同其观点和对其真实性负责。