五个机器学习中的常见难题及解决方法

来源: 网络 日期:2021-12-03

人们可能听说过很多机器学习的用例。例如参加会议、分享人工智能技术的LinkedIn帖子、以及博客文章都有所提及。虽然人们都知道机器学习这个术语,但在多大程度上理解了机器学习的含义?

对于IT或数据科学领域的行业专家来说,他们非常精通这些技术。然而对于那些没有行业背景的人来说,这个术语必须得到适当的解释。由于对机器学习有一些含糊的解释,也带来了许多令人迷惑的误解。

五个机器学习中的常见难题及解决方法

什么是机器学习?

机器学习涉及从数据中学习。简而言之,它有助于处理收集的数据以提供更好的结果。无论规模大小,每个企业都在收集随着时间累积的信息。由于种类繁多,因此通过人工筛选这些数据并非易事。

机器学习可以通过整理并分析数据来帮助企业解决日常问题。机器学习是人工智能的一部分,有时这两个术语可以互换使用,具体取决于其使用方式和要求。通过机器学习使用正确的算法处理数据可以节省大量时间。

机器学习的历史

机器学习这个术语最初是在1949年由Donald Hebb在其著作《行为的组织》中描述脑细胞相互作用的模型时提出的。然而那时并没有对机器学习给出一个很清楚的解释。直到上世纪50年代才取得突破。

在上世纪50年代,IBM公司计算专家Arthur Samuel开发了一个跳棋游戏的计算机程序。该程序只需要很小的存储空间,他根据棋子在棋盘上的位置建立了一个计分系统。该系统可以计算出双方获胜的机会。

随着时间的推移,机器学习技术得到了很大的发展。如今,人们喜欢语音、人脸识别和相机滤镜各种功能,甚至可以在上网时创建机器学习基础设施。

常见难点以及解决方法

就像任何程序或项目一样,总会出现一些问题。以下是人们需要关注的机器学习应用中的一些常见痛点:

(1)需要实现自动化吗?

由于网上有很多关于机器学习的文章,很难区分这些信息是否真实。有许多程序和软件涉及到机器学习的使用,其选择是无止境的。但是在选择使用哪种软件之前,首先要了解要解决的问题以找到正确的解决方案。

采用自动化可以解决一些常见的业务问题,但是在采用涉及机器学习的自动化技术之前,有些问题需要更深入地研究。

需要记住这一点:机器学习可以帮助实现自动化,但是并非所有的自动化技术都需要机器学习。

(2)数据质量

机器学习在数据具有更高质量时才更有效。许多企业依靠机器学习和人工智能来简化他们的工作,其中包括找到工作场所问题的最佳解决方案。因此,在使用机器学习和与其相关的程序时,提供的数据应该准备充分且干净完整,以产生更准确的结果。

(3)基础设施

由于机器学习的运行速度如此之快,因此它需要大量的数据处理能力,其完成的工作量也需要采用先进的硬件。因此,在企业采用机器学习并探索其功能之前,需要确保已经更新技术和硬件,以确保满足性能需求。

采用新技术可能会花费很多成本,但是一旦成功使用,就会有所回报。企业可以尝试升级当前系统中的一些硬件,并扩展存储容量。

(4)实施

机器学习非常复杂,并且当企业选择深入研究这一领域时,需要得到专家的指导和帮助。切换到不同类型的程序可能会造成混乱,并且需要花费大量时间进行调整。还要注意其他事项,例如安全性。因此,企业应寻求实施合作伙伴的帮助,其合作伙伴可以指导他们完成整个过程。

通常合作伙伴是精通机器学习技术的IT专家。他们可以帮助企业确定最适合的机器学习和其他程序。同样,他们可以发现异常,进行预测性分析,可以更轻松地为企业的需求建模。

(5)技术资源数量

机器学习和人工智能是相对较新的行业,这意味着这一领域的技术人员并不多。因此,需要采用机器学习技术的企业可能缺乏相应的人才。由于能够提供最佳支持的专业人员数量有限,因此外包服务的费用很高,特别是可以提供更高工作质量的人员。

机器学习会毁灭人类吗?

关于机器学习有很多有趣的故事,其中的一个说法是机器学习可能会毁灭人类。人们担心人工智能和机器学习可能过于聪明,并且与人类相比更会学习知识。因此,他们认为机器学习是一股不容忽视的力量,将使人类面临威胁。

    A+
声明:本文转载自其它媒体,转载目的在于传递更多信息,并不代表赞同其观点和对其真实性负责。